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Abstract—A slow binary gas mixture flow in a capillary with evaporation is studied using the model

kinetic equation in the Hamel form. Particularly, in a one-component case the approximate expression is

obtained for calculation both of the volumetric flow rate and the velocity profile at 0 € « € 5 (x = 1/2Kn).

At large «, the asymptotic formula for volumetric vapour flow rate shows that at a certain relationship

between « and dimensionless capillary length, the vapour flow rate tends to a constant value corresponding
to evaporation from a free surface.

NOMENCLATURE
f;, &, n;,my, distribution function, molecular
velocity, numerical density and mass of the
ith species molecule;

n,p, numerical density and pressure of a mixture;
k, Boltzmann constant;

Vs = n/n;

L, capillary length;

l, = L/rq;

Ci, =v;h'?;

n, unit normal vector to the lateral surface;

w, refers to the capillary walls;

IR refers to outlet quantities.

As Luikov [1] mentioned many times it is important
to study vapour transfer kinetics in an individual
capillary for description of transfer processes in
capillary-porous bodies. In this case a finite length of
the capillary (evaporation recession zone) should be
taken into account. In [2] consideration was made of a
free molecular flow with regard for evaporation both
at the bottom and at the walls of a capillary.

Many works deal with gas flow in an infinite capillary.
For example, in {3] the problem is numerically solved
over a wide range of the Knudsen numbers, in [4] the
asymptotic solution is found for small Kn, similar
estimates are given in [5] where the problem is also
solved for large Kn. As regards a binary gas mixture
flow in a long capillary, works [6-8] should be
mentioned.

Consider a slow flow of a binary gas mixture in a
cylindrical capillary, o in radius, from one side (Z = 0)
bounded by a flat bottom, on which component one
evaporates. The temperature of the internal capillary
surface is assumed constant. The gas molecules are
considered to diffusely reflect from the walls, the
evaporation {condensation) coefficient being equal to
unity.

The gas flow is treated on the basis of the model
kinetic equation in the Hamel form [9]:
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Here R = (X, Y), & = (&ix, &iy), the axis Z coincides
with the cylinder axis, 4;;= A; are the quantities
characterizing collision cross-sections,

hij 3/2
Joig=n; (‘;) exp{ ~hy(&i—vy)*}
where

m;

h.. = .
Y m,-+mj

ny
ﬂ“ﬁ;a Ui = ﬂivl"’ujvp W=
Note that for the slow flows considered at =T, =T
toalinear approximation Tj; = T, ie by = h; = m;/2kT,
Introduction of the dimensionless coordinate and
velocity

Zx-?—’ r=—, uiz.{thly2
To To
reduces equation (1) to the form
of; ¢
wo b, = o z Agn(foy=FD @)

Write down the boundary conditions. At the side
surface (r = 1) for the reflected molecules

h. 3/2
fin.u, > 0) = ny, exp{—~uf} (;') , 3

at the bottom (z = 0)
/2

fl(uz>0) "nlsexp{ U1}< ) (4)

where n;, is the density of saturated vapour of com-
ponent one at temperature T. Also prescribe densities
ngatz=1

By analogy with the problems on a slow gas flow in
an infinite length capillary under a small pressure
gradient [10], solution of equation (2) is sought in the
form:

= fal1+Ki(z— D+ up fulr, u,)], 5

where K; is the unknown constant.
From equation{5)it is seen that n; depends only on z.
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Substitution of equation (5) into equation (2), upon
linearization, yields (i = 1, 2, j # i):

lra i ) i
v “—_i’—z[(l e+ Bl %]~ )

where
o = rohl*(Auny+ Ayng),

Bi = Ayinp/(Aiing+ Ajny) is the fraction of collisions of
molecules of the ith component with those of the jth
one in the total of collisions of the ith component.

Dimensionless mean mass velocities ¢;, and ¢;, due to
axial symmetry depend only on r.

Equations {3) and (5) imply that at r = 1

(. u;, > 0) = 0. (7

Write equation (6) in an integral form (integration is
made over the characteristics) with regard for condition

7

b 1 .,
Y = “i{ _CXP{“‘?‘LS“}
o Ui Uy

K;
X {2[(1 =B+ Bilpp) ;] - ;} ds (8)
where
s = JIx=xP+=y)].
b= —rcosf+./(1—rsin’ ).
It should be noted that a similar equation for a plane

duct is obtained in [11].
Since according to equation (5}

i
Cig = 5 jui exp{ —“iz}\f/id“i,

then multiplication of equation (8) by

2
uf
T Z exp{ —u?}

and integration with respect to w; {dw; = u;, du;, du;, d6)
give:

o 2r *b
()= ci(r) = 2—;;[ J Ip(a;s)

0 (4]

x {21:(1 —Bietr)+ 3;(&#;}”2%(?‘ - %‘} dsdf (9)

where
I(s) = J rm exp{— (:2 +5>}dt.
0 t

Unlike the quantities presented in the above works
K; are not prescribed but should be found. Two more
equations are needed to determine K;. These are found
by equating the flow through an arbitrary capillary
cross-section to the flow at the bottom obtained for the
first component with regard for equation (4) and for the
second one, the former flow is assumed to be zero:
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In expression (5)and when deriving equation (10a) an
assumption was made that the distribution function
depends on z in the same way up to the bottom. Thus,
all following results are valid for z >z, where
2z =~ 1/2¢; 1s the Knudsen layer thickness of the ith
component. Consider the case o; = o, = o, i.e. Z;o=
Zy0 = Zg. S0, the problem has been reduced to solution
of equations (9) and (10). Find the expression for the
effective diffusion coefficient D. The mean mass velocity
of the mixture is defined by:

m1 nop+man, v,

myhy RN,

The diffusion velocity of component one is written
according to [12] (with no barodiffusion):
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(1
Integration of equation (11) over the cross-section,
linearization and using expression (10a) give:
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Let us make a study of the extreme cases of small
and large «.
Since sdsdf = dx'dy’,

0(055

Iy(asydsdf = dx'dy’

At —r, s tends to zero, and at small &, [ Io(os)]/s tends
to infinity. Therefore, ¢,(r') may approximately be re-
placed by ¢;(r) at such « in the r.hs. of equation (9). A
similar procedure is performed in {10] when con-
sideration is made of a flow between infinite paraliel
plates, in this case the kernel of the integral equation
has a logarithmic singularity. For ¢, and ¢, the
following system of algebraic equations is obtained:

K
d,-lc,-+d,~zcj=—-a (12)

2

2rn b n
a(r) = J J I(as)dsdo = %F”J Il(ab)dﬂ},
0 0 of 2 4]

o
dy = ”(l‘ﬂiﬂj)a” 1

“ng (}1 )2,

When solving equation (12) ¢; is expressed in terms of
K; and K;; and substitution of the solutions obtained
into equations (10) then gives K; and K.

The calculations from equation {12) have shown that
at o —0 the values of vapour flow and diffusion
coefficient D tend to those in a free molecular flow.

For a — oo the problem is solved as follows. A Taylor
series expansion of the function ¢;(r') with respect to x’
and y, with the first and second derivatives only
considered and x = r, y = 0 assumed for the sake of
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calculation convenience gives

dc; _ de 50, =0
ax, X'=ry=0 dr ’ ay x'=py =0 ’
5ZC; _ d2C; BZC,' 1 dcg
ax'? X=ry=0 - dr?’ aylz x'=ry =0 o d!‘
d%¢; .
_‘WC‘, =0, x'—x=scosf, y—y=ssind.
X0y |y v,y =0
and

d 1
ol = +— % (scosf+—ssin®0
dr 2r
2
+§E——- 2cos?f. (13)
Substitution of equation (13) into equation (9) and
replacement of integration over the capillary cross-
sectional area by integration over the circle area with

radius B/o where L,(B) = 0 yield equations:

1-Biu; 1 d
22 rdr dr + Bl e

Bilwspw)'* 1 d ( dCJ) K

202 rdr\ dr) 2« (14)
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+

Multiplying equations (14) by ul2/B;, respectively,
summing them up, using relation

b ()"
B mi\yy

and passing to dimensional velocities, we have:

mi’2
1nuv+my?ngyv,

2kT 1/2
= BT o  ma )02 D +C. (19

Multiplying equation (15) by m}/%/p, and using relation
similar to equation (11} yield

o 2 \12
b= 1z Uz ami\.T -1 —
dn[mY? +y, (M2 —myH]\KT dz
my*m;)  dp
‘/2-m5/2 ] E

Dny(m}m, —
ropi[my* +y,(m

Here the first summand is the Poiseuille flow; v, is the
viscous slip, and the summand involving dy,/dz de-
scribes diffusional slip, it is the same as the appropriate
term of work [13].

The solution procedure of the problem for inter-
mediate values of « is given below. Pass to a more simple
one-component case when evaporation occurs at the
bottom. Then, instead of equation (9) we have:

wir) = J\ f [w(r)-l» ]Io(ozs)dsde (16)
where
_ 2¢
w= —E.
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Note that for small o use of the above method gives:

1
Wo = s (17)
2
afr)
foroa— oo
oz
=§(1—r2)+w,,,. (18)

Here w,, is the slip velocity. According to [4]

W= 1016+ 2.

For intermediate «, the approximate analytical solu-
tion for wy(r) may be found as follows. Substitution of
w{r'}in the form (13) into equation (16) and replacement
of dw/dr, d2w/dr? by their values at large « taken from
equation (18) yield:

o ay(r)+0-5a,(r)

n—oalr) (19)

wi(r) = wolr)—

where

2n *b
ay(r) = j J s cos Olo(os) ds d6
(1]

4]
2{" 1
= —— J cosf [bll(ab) +- Iz(ocb)_J dé
o Jo [+

ax(r)

J. j s hlas)dsdo

=2 J [— ~L(ab)b? - = Iz(ab)b - 35 Iy(ab) + -13] dé
1} o o

The dimensionless volume flow rate per unit area
based on —K/2 is equal to:

2 1
N¥=—-—N=21| rw()dr
K L )

(20)

According to calculations up to & of order 1, the
values of wy(r) and wy(r) (and consequently of N*)
coincide practically. Differences between we(r) and
wy(r) increase with a.

The integrals in the functions a(r), a,(r) and a,(r) are
calculated numerically. In this case the values of I,(t)
at t <1 are approximated by series {14], and at 1 > 1,
by the sum of two exponents (section = 1+10 is
divided into two).

The values of N* from equations (17) and (19) are
compared with the numerical results of work [3]
(Table 1). There is a good agreement between the values
of N* determined from w, (or wy) and those from [3]
at ¢ < 1. For larger o, flows N* evaluated from w, also
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Table 1. Values of volume flow rate N* as function of «
o 01 02 03 04 1 2 3 4 5
N*b¥(19) 1-404 1-383 1379 1-383 1482 1-726 1997 2274 2:554
N* from [3] 1-404 1-382 1377 1380 1-459 1661 1885 2119 2:358
N*by (17 1-404 1-383 1-379 1-385 1-501 1-865 2424 3-240 4411

agree satisfactorily with the values of [3]; moreover, the

distribution w;{r) at & = 5 agrees well with the velocity

distribution of [4]. All this allows formula (19} to be

used for calculation of the velocity profile and flow.
Based on equations (10a) and (20) we have:

|n
T
LT
3
%y
N=_D 21
31—-%-7:”2
N*

At large o from equation {21), use of the relation
N* = }a+ W, obtained from equations (18) gives:

%y
]
8!
a+4w,

N= 50}

12

Thus, equation (22) implies that at [ « n/?¢/8 the
Hertz—Knudsen formula may be used for evaporation
from a free surface with regard for a mass velocity in
the distribution function of molecules impinging on the
bottom [15], i.c. unlike the case of an infinite tube [3]
at o — oo flow N tends to a constant value.

It should be noted that the parameters ny, ! and o
may not be chosen independently: « should vary with
m, Or ro. That o be changed with ry and n,/n; being
constant, it is necessary to change n,, ie. the tempera-
ture of the system (n, and T are related by the equation
for a saturated vapour density), Thus dimensional
velocities and flows may be passed over to by using
different factors depending on temperature, i.e. on «.

However, since the expression for saturated vapour
density involves an exponential dependence on T, this
difference is not large, e.g. for ice change in & from 0-1
to 5 gives rise to 1-17-fold increase in temperature.
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SUR LA CINETIQUE DU TRANSFERT DE MASSE AVEC
EVAPORATION DANS UN CAPILLAIRE

Résumé— Un écoulement lent d’'un mélange binaire gazeux dans un capillaire avec évaporation est étudié

en utilisant un modéle d’équation cinétique sous la forme de Hamel. En particulier, dans le cas d'un seul

composant, une expression approchée est obtenue pour le calcul du débit volumique et du profil de

vitesse pour 0 € a < 5 (x = 1/2 Kn). Aux grandes valeurs de o, la formule asymptotique donnant le débit

volumique de la vapeur montre que, lorsqu’une certaine relation entre « et la longueur réduite du

capillaire est vérifide, le débit de vapeur tend vers une valeur constante qui correspond a I'évaporation
sur une surface libre.

KINETIK. DES STOFFAUSTAUSCHS BEl VERDAMPFUNG IN EINER KAPILLARE

Zusammenfassung— Unter Verwendung der kinetischen Modellgleichung in der Form von Hamel wird
die langsame Kapillarstrémung einer verdampfenden bindren Gasmischung untersucht.
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Im Bereich 0 < a < 5 (« = 1/2 Kn) wird zur Berechnung aus der volumetrischen Stromungsgeschwindig-
keit und aus dem Geschwindigkeitsprofil ein angendherter Ausdruck erhalten, der besonders im Fall
einer Komponente Giiltigkeit hat.

Bei groBen Werten von « zeigt die asymptotische Gleichung fiir die volumetrische Dampfgeschwindig-
keit, daB bei einem besonderen Verhéltnis zwischen « und der dimensionslosen Linge der Kapillare die
Dampfgeschwindigkeit einen konstanten Wert erreicht, entsprechend der Verdampfung an einer freien

Oberfldche.

O KMHETHMKE MACCOITEPEHOCA ITPHU UCITIAPEHUU B KATIUJIJIAPE

Amnoramus — Ha OCHOBE MOIENBHOTO KHHETHYECKOIO ypaBHeHHs B topme Iamens mccnenyercs
MeJIEHHOe TeueHHe ODMHApHOM CMECH ra3oB B KAM/UAPE NPH HAJTHYMM HCIIADEHHS B HeM. B vacT-
HOCTH, B OJHOKOMIIOHEHTHOM CJIy4ae IIONy4eHO NPHOIHKEHHOE BBIPAXEHHE ANA pacuera Kak
o0BEMHOrO pacxofia, Tak M mpoduns ckopocTd npH 0<a <5 (e~ 1/Kn). B ciayyae Gombumx
3HAaYeHHH o M3 HAWAEHHOH acHMMITOTHYeckoM (opmMyssl 118 0GBEMHOTO pacxoda mapa ClEeayeT,
YTO MPH ONpele/EHHOM COOTHOLIGHHH MEXAY « M 6e3pa3MepHON AMMHON KamMMIspa pacxol
CTPEMHTCS K HOCTOAHHOMY 3HAYEHHIO, COOTBETCTBYIOLUEMY MCMIAPEHMIO ¢ OTKPHITOH NOBEPXHOCTH.
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