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Abstract-A slow binary gas mixture flow in a capillary with evaporation is studied using the mode1 
kinetic equation in the Hamel form. Particularly, in a one-component case the approximate expression is 
obtained for calculation both of the volumetric flow rate and the velocity profile at 0 Q GI Q 5 (a = l/ZKn). 
At large a, the asymptotic formula for volumetric vapour flow rate shows that at a certain relationship 
between c( and dimensionless capillary length, the vapour flow rate tends to a constant value corresponding 

to evaporation from a free surface. 

NOMENC~TUR~ 

fi, Q, ni, mi, distribution function, molecular 
velocity, numerical density and mass of the 
ith species molecule; 

n, P7 numerical density and pressure of a mixture; 

k, Boltzmann constant; 

Yis = Pti/fl; 

L, capillary length; 

1, = L/r,; 

Cir = v.h!‘2. II I 
4 unit normal vector to the lateral surface; 

0, refers to the capillary walls; 

f , refers to outlet qu~tities. 

AS LUIKOV [l] mentioned many times it is important 
to study vapour transfer kinetics in an individual 
capillary for description of transfer processes in 
capillary-porous bodies. In this case a finite length of 
the capillary (evaporation recession zone) should be 
taken into account, In [Z] consideration was made of a 
free molecular flow with regard for evaporation both 
at the bottom and at the walls of a capillary. 

Many works deal with gas flow in an infinite capillary. 
For example, in [3] the problem is numerically solved 
over a wide range of the Knudsen numbers, in [4] the 
asymptotic solution is found for small Kn, similar 
estimates are given in [S] where the problem is also 
solved for large Kn. As regards a binary gas mixture 
flow in a long capillary, works [6-81 should be 
mentioned. 

Consider a slow flow of a binary gas mixture in a 
cylindrical capillary, r0 in radius, from one side (Z = 0) 
bounded by a flat bottom, on which component one 
evaporates. The temperature of the internal capillary 
surface is assumed constant, The gas molecules are 
considered to diffusely reflect from the walls, the 
evaporation (condensation) coefficient being equal to 
unity. 

The gas flow is treated on the basis of the model 
kinetic equation in the Hamel form [9]: 

CiR g + CiZ $ = ,il Ajnj(fOjj_fi)3 i = 1,2. (1) 

Here R = (X, Y), Cia = (&&, &), the axis Z coincides 
with the cylinder axis, Aii = A,i are the quantities 
characterizing collision cross-sections, 

where 

4 

Note that for the slow flows considered at T = Ij = T 
to a linear approximation F = T, i.e. h, = hi = mi~2k~ 

Introduction of the dimensionless coordinate and 
velocity 

Z R 
z=--, r=-, uj;_&h;/2 

r0 r0 

reduces equation (1) to the form 

% $ SUM g = rohfj2 i Aijn,(foij-fi). (2) 
j=l 

Write down the boundary conditions. At the side 
surface (r = 1) for the reflected molecules 

h. 3i2 
fi(n . iif, > 0) = ni, exp{ - 24:) -f 

i> 
, (3) 

at the bottom (z = 0) 

fi(u, > 0) = q,exp(--uf) : 
i> 

312 
(4) 

where n,, is the density of saturated vapour of com- 
ponent one at temperature T. Also prescribe densities 
nil at Z = 1. 

By analogy with the problems on a slow gas flow in 
an infinite length capillary under a small pressure 
gradient [lo], solution of equation (2) is sought in the 
form : 

~f;:=:,[l+K,(z-I)+u,~i(r,Ui,)]r (5) 

where Ki is the unknown constant. 
From equation (5) it is seen that nj depends only on z. 

805 
HMT Vol. 18, No. 4-G 



806 N. V. PAVLYUKE~ICH, V. G. LEITSINA and G. I. RUIXN 

Substitution of equation (5) into equation (2), upon 
linearization, yields (i = 1,2, j # i): 

$i+:!$= 2[(1_Pi~j)c~~+~i(~i~j)“‘ci;l-~ (6) 
I I 

where 

tli = r. ht’*(Aii nil + A,tlj[)* 

pi = AijnjJ(Aiinil f  Aijnj,) is the fraction of collisions of 
molecules of the ith component with those of the jth 
one in the total of collisions of the ith component. 

Dimensionless mean mass velocities ciz and cjz due to 
axial symmetry depend only on Y. 

Equations (3) and (5) imply that at r = 1 

in expression (5) and when deriving equation (10a) an 
assumption was made that the distribution function 
depends on z in the same way up to the bottom. Thus, 
all following results are valid for z > zio where 
ziO N 1/2a, is the Knudsen layer thickness of the ith 
component. Consider the case LY, = CQ = n, i.e. -ii0 = 
.zzo = zo. So, the problem has been reduced to solution 
of equations (9) and (10). Find the expression for the 
effective diffusion coefficient D. The mean mass velocity 
of the mixture is defined by: 

$i(ll s Uir > 0) = 0. (7) 

Write equation (6) in an integral form (integration is 
made over the characte~stics) with regard for condition 

(7): 

where 
s = J[(x-x’f~+(y-y’)z], 

b = -rcosB+,/(l-rZsinZB). 

It should be noted that a similar equation for a plane 
duct is obtained in [ 111. 

Since according to equation (5) 

cil= -$ s dexpf-uZ)$idui, 

then multiplication of equation (8) by 

and integration with respect to ui (dui = uir dui, duir de) 
give: 

Cir(r) = Ci(T) = 2 

2rr b 

ss 
Io(@iS) 

0 0 

X 

i 
2[(1 -Bi~j)ci(r’)+Bi(~i~j)“‘cj(r’)] 

where 

Unlike the quantities presented in the above works 
Ki are not prescribed but should be found. Two more 
equations are needed to determine & . These are found 
by equating the flow through an arbitrary capillary 
cross-section to the flow at the bottom obtained for the 
first component with regard for equation (4) and for the 
second one, the former flow is assumed to be zero: 

s I 
s-l+K*l 

rq dr = 
‘%I 

2K’/2 ’ (W 
0 

s 1 

ret dr = 0. 
0 

W’b) 

The diffusion velocity of component one is written 
according to [12] (with no barodiffusion): 

Integration of equation (11) over the cross-section, 
linearization and using expression (lOa) give: 

D 2 
-z.z 

i 

1 
!k~+K*[ 

r,h;“2 KZ--K] ,o 

IT, dr = 
‘111 

7P(K2 - K,) . 

Let us make a study of the extreme cases of small 
and large CX. 

Since s ds d0 = d?c’ dy’. 

I,(as) ds dB = 
I,(4 
__ dx’dy’. 

5 

At r’ + Y, s tends to zero, and at small CI, [~o(cts)]/s tends 
to infinity. Therefore, ci(r’) may approximately be re- 
placed by ci(r) at such c1 in the r.h.s. of equation (9). A 
similar procedure is performed in [lo] when con- 
sideration is made of a flow between infinite parallel 
plates, in this case the kernel of ihe integraf equation 
has a logarithmic singularity. For c, and c2 the 
following system of algebraic equations is obtained: 

djl ci +di2 cj = 2 a 02) 

where 
2n b 

u(r) = 
ss 0 0 

lo(ns)dsdO=~~~--~~l,(ab)dB/, 

dil =~(l-fiilr,)a-l, 

di2 = $ (pipj)“%. 

When solving equation (12) ci is expressed in terms of 
Ki and Kj; and substitution of the solutions obtained 
into equations (10) then gives Ki and Kj. 

The calculations from equation (12) have shown that 
at cx +O the values of vapour flow and diffusion 
coefficient D tend to those in a free molecular flow. 

For c( -+ cc the problem is solved as follows. A Taylor 
series expansion of the function ci(r’) with respect to x’ 
and y’, with the first and second derivatives only 
considered and x = r, y = 0 assumed for the sake of 



calculation convenience gives 
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Note that for small a use of the above method gives: 

hi dci aci - 
ax' X~=,,y~=OL= dr' 8~' 

= 0, 
x’=r,y’=o 

d2ci d2c, a2ci 1 dci I_ =-- 
&P x_+. = dr2’ ap x’=r,y’=O I dr ’ 

1 
wg=- (17) 

R ’ 
a 

44 

a2ci 
= 0, xl-x = scos0, y’-y = ssin0. 

for a + 00 

aday x'=r,y'=O 
and 

w =;(l-r2)+W,. 

Ci(J) = Ci(r) + $ 
( 
SCOS 0 + $ S2 sin2 8 

) 

+;$‘cos% (13) 

Here w, is the slip velocity. According to [4] 

0.548 
w, = 1.016+---. 

ci 

08) 

Substitution of equation (13) into equation (9) and For intermediate ~1, the approximate analytical solu- 
replacement of integration over the capillary cross- tion for wl(r) may be found as follows. Substitution of 
sectional area by integration over the circle area with w(r’) in the form (13) into equation (16) and replacement 
radius B/u where I&_?) = 0 yield equations: of dw/dr, d2w/dr2 by their values at large E taken from 

eauation (18) vield: 
1 ~ I< 

wl(r) = we(r) - cx2 
al(r)+OCkz2(r) 

x - au(r) 
(1% 

where 

Multiplying equations (14) by pi”/fii, respectively, 2n b 

summing them up, using relation al(r) = 
ss 

s cos fUo(m) ds d6 
0 0 

and passing to dimensional velocities, we have: 

b&(&b) + k 12(ab) 1 d6, 

= ~(nllKl+n21K2)(r2-l)+~. (15) 
2~ 6 

= 
s1 

s210(as) ds d6 
0 0 

Multiplying equation (15) by m:‘“/pl and using relation 
similar to equation (11) yield 

- i 1,(ab)b2 - $ I,(ab)b - -$ I,(ab) + f 1 d0. 

u 
The dimensionless volume flow rate per unit area 

based on -K/2 is equal to: 

+ --+U,. 
ropl[m:i2 +yl(m:j2 -mY’)] dz N*=_;N=2 

I 

1 
rw(r) dr. (20) 

0 

Here the first summand is the Poiseuille flow; u, is the 
viscous slip, and the summand involving dy,/dz de- According to calculations up to a of order 1, the 
scribes diffusional slip, it is the same as the approp~ate values of we(r) and w&r) (and consequently of N*) 
term of work [ 131. coincide practically. Differences between we(r) and 

The solution procedure of the problem for inter- WI(r) increase with a. 
mediate values of tl is given below. Pass to a more simple The integrals in the functions a(r), al(r) and a2(r) are 
one-component case when evaporation occurs at the calculated numerically. In this case the values of I,,,(t) 
bottom. Then, instead of equation (9) we have: at t G 1 are approximated by series f141, and at i > 1, 

by the sum of two exponents (section t = 1~ 10 is 

w(r~=~~~*~ob[w(r~~+~]~~(~~dsd~ (16) dividedinto two)’ 
The values of N* from equations (17) and (19) are 

where 

_ 
compared with the numerical results of work [3] 

2c 
(Table 1). There is a good agreement between the values 

w= --* of N* determined from w. (or wt) and those from [3] 
K at GL < 1. For larger a, ilows N* evaluated from w1 also 
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Table 1. Values of volume ffow rate N* as function of cz 

Ci 0.1 0.2 0.3 0.4 I 2 3 4 5 
_.-” ~ ___..__.._______--_. 

N* by(19) L-404 I.383 1,379 I.383 1,482 l-726 1.997 2.274 2.554 
1.404 1.382 1.377 1.380 1.459 1,661 1885 2.119 2.358 
1.404 1,383 1,379 1.385 1501 1,865 2424 3.240 4.411 

agree satisfa~to~ly with the values of [3]; moreover, the 
dist~bution wr(r) at CI = 5 agrees well with the velocity 
~st~bution of [4]. All this allows formula (19) to be 
used for calculation of the velocity profile and Aow. 

Based on equations (lOa) and (20) we have: 

n, -- 1 
N=nl, 

$ + $.p 
(21) 

At large cz from equation (21), use of the rdation 
N* = aa + W, obtained from equations (18) gives: 

n, -- 1 

N= a2 

-&+ 7P2 

I @2 

Thus, equation (22) implies that at E << &x/8 the 
Hertz-Knudsen formula may be used for evaporation 
from a free surface with regard for a mass velocity in 
the distribution function of molecules impinging on the 
bottom fl5], i.e. unlike the case of an infinite tube [3] 
at a 4 00 fIow N tends to a constant value. 

It should be noted that the parameters nr, 1 and tl 
may not be chosen independently : u should vary with 
FZ~ or rO. That c1 be changed with rO and n,/% being 
constant, it is necessary to change n, , i.e. the tempera- 
ture of the system (n, and T are related by the equation 
for a saturated vapour density). Thus dimensional 
velocities and flows may be passed over to by using 
different factors depending on temperature i.e. on ru. 

However, since the expression for saturated vapour 
density involves an exponential dependence on ‘I’, this 
difference is not large, e.g. for ice change in CI from 0.1 
to 5 gives rise to l*I7-fold increase in temperature. 
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SUR LA CIN~TI~U~ DU TRANSFERT DE MASSE AVEC 
EVAPORA~GN DANS UN CAPILLAIRE 

Reaumb-LJn ecoulement lent dun melange binaire gazeux dam un capillaire avec evaporation est ttudie 
en utilisant un modble d’equation cinetique sous la forme de Hamel. En particulier, dam le cas dun seul 
composant, une expression approchee est obtenue pour le calcul du debit volumique et du profil de 
vitesse pour 0 C a d 5 (a = l/Z&). Aux grandes valeurs de a, la formule asymptotique dormant le debit 
volumique de la vapeur montre que, forsqu’une certaine relation entre a et la tongueur red&e du 
capillaire est v&if&, le debit de vapeur tend vers une valeur constante qui correspond li ~~vaporat~on 

sur une surface Iibre. 

KINETSK DES STGFFAUSTAUSCHS BEI VERDAMPFUNG IN EINER KAPILLARE 

Z~arn~~~g-Unter Yerwendung der kinetischen M~ellgleichung in der Form von Hamel wird 
die langsame Kapillarstr~mung einer verd~pfenden bin&en Gasmischung untersucht. 
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Im Bereich 0 6 a Q 5 (a z l/2 Kn) wird zur Berechnung aus der volumetrischen Stromungsgeschwindig- 
keit und aus dem Geschwindigkeitsprofil ein angeniiherter Ausdruck erhalten, der besonders im Fall 
einer Komponente Giiltigkeit hat. 

Bei grol3en Werten von a zeigt die asymptotische Gleichung fur die volumetrische Dampfgeschwindig- 
keit, da13 bei einem besonderen Verhlltnis zwischen a und der dimensionslosen Lange der Kapillare die 
Dampfgeschwindigkeit einen konstanten Wert erreicht, entsprechend der Verdampfung an einer freien 

Oberfllche. 

0 KkiHETFiKE MACCOIIEPEHOCA TIPI4 FiCl-IAPEHklki B KAl-IMJIJI5TPE 

hHOTi3UllR - Ha OCHOBe MO~WIbHOTO KHHeTHYeCKOrO )‘paBHeH&iS B @OpMe raMeJIR IiCCJIenyeTCa 

MeaJIeHHOe TeWHHt? 6aHapHoi CMeC&i Ei30B B KaIIWIJIRpe IIpEi HUIWWiii HCIIapeHWI B HeM. B YBCT- 

HOCTH, B OJ(HOKO.MIlOHeHTHOM CJIyVae IIOJIy’IeHO IIpH6JIHxeHHOe BbIpaXCeHHe JJJISI PaWeTa KBK 

06ae~~oro pacxona, Tax H npo@ina CKOPOCTK npu 0 <TV < 5 (a 2: l/Kn). B cnyrae 6onbmax 
3Ha’EHHfi a 113 HatiAeHHOfi aCHMIITOTH%CKOti @OpMynbI &‘IR 06%MHOrO PaCXOna IIapa CJIeflJ’eT, 

YTO ITPK OIIpeAWIeHHOM COOTHOIIEHWA MewCAy ~2 H 6espasMepHoP AJIUHOft KiUI&iJIJI$ipa PaCXOp. 

CTpeMHTCS# K IIOCTOffHHOMy 3Ha’IeHAK), COOTBeTCTByKIlQeMy IiCl-IapeHHIO C OTKpblTOfi IlOBepXHOCTH. 


